OMP Based Joint Sparsity Pattern Recovery Under Communication Constraints
نویسندگان
چکیده
منابع مشابه
Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints
Vector valued data appearing in concrete applications often possess sparse expansions with respect to a preassigned frame for each vector component individually. Additionally, different components may also exhibit common sparsity patterns. Recently, there were introduced sparsity measures that take into account such joint sparsity patterns, promoting coupling of non-vanishing components. These ...
متن کاملEfficient Sparsity Pattern Recovery
The theory of compressed sensing shows that sparsity pattern (or support) of a sparse signal can be recovered from a small number of appropriate linear projections (samples). Unfortunately, as soon as noise is added, the number of required samples exceeds the full signal dimension, rendering compressed sensing ineffective. In recent work, we have shown that this can be fixed if a small distorti...
متن کاملStable recovery of deep linear networks under sparsity constraints
We study a deep linear network expressed under the form of a matrix factorization problem. It takes as input a matrix X obtained by multiplying K matrices (called factors and corresponding to the action of a layer). Each factor is obtained by applying a fixed linear operator to a vector of parameters satisfying a sparsity constraint. In machine learning, the error between the product of the est...
متن کاملConfidence-constrained joint sparsity recovery under the Poisson noise model
Our work is focused on the joint sparsity recovery problem where the common sparsity pattern is corrupted by Poisson noise. We formulate the confidence-constrained optimization problem in both least squares (LS) and maximum likelihood (ML) frameworks and study the conditions for perfect reconstruction of the original row sparsity and row sparsity pattern. However, the confidence-constrained opt...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2014
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2014.2343947